Pays: Togo **Année**: 2016 **Session**: Mathématiques

Série: BAC, Série A4 **Durée**: 2 h **Coefficient**: 1

EXERCICE 1 (05 points)

1. On considère la suite U définie par : $U_1 = 2$ et $\forall n \in \mathbb{N}^*$, $U_{n+1} - U_n = 0,15U_n$.

Déterminer si U est arithmétique ou géométrique.

Dans l'affirmative, préciser sa raison et exprimer U_n en fonction de n.

2. Maguy, soucieuse de se maintenir en forme, décide d'acheter un vélo d'appartement et de l'utiliser chaque jour.

Elle se fixe le programme suivant : - Je débuterai lundi en faisant 2 km par jour.

- Chaque lundi, j'augmenterai la distance journalière de 15% par rapport à celle de la semaine précédente.

- a) Quelle sera la distance journalière parcourue la deuxième semaine ? la troisième semaine ?
- **b**) On note d_n la distance parcourue la n-ième semaine.

Montrer que : $d_{n+1} = 1,15d_n$.

- c) Exprimer d_n en fonction de n.
- d) Pendant combien de semaines dépassera-t-elle pour la première fois 10 km?

EXERCICE 2 (04 points)

On considère le polynôme : $P(x) = 2x^3 - x^2 - 7x + 6$.

- **1.** Calculer: P(1), P(-1), P(-2) et $P(\frac{3}{2})$.
- 2. Déduire de la question précédente une forme factorisée de P(x).
- **3.** Résoudre dans \mathbb{R} l'inéquation : P(x) > 0.
- **4.** Résoudre dans \mathbb{R} l'équation : $2e^{3x} e^{2x} 7e^x + 6 = 0$.

PROBLÈME (11 points)

- I- On pose $g(x) = \frac{x+1}{x-1}$, où g est une fonction définie sur l'ensemble $K =]-\infty$; $1[\cup]1$; $+\infty[$ et x une variable réelle.
- 1. Résoudre dans K, l'inéquation : $\frac{x+1}{x-1} > 0$.
- **2.** Calculer les limites de *g* aux bornes de K.
- II- Dans cette partie, on pourra utiliser les résultats de la partie I-.

Soit la fonction f de la variable réelle x définie par : $f(x) = ln(\frac{x+1}{x-1})$.

On désigne par (\mathcal{C}) sa représentation graphique dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

- **1.** Déterminer l'ensemble D de définition de f.
- **2.** Calculer les limites de f aux bornes de D.

Préciser les équations des éventuelles asymptotes à la courbe (C).

3. Sachant que $\forall x \in D, -x \in D$, montrer que : f(x) + f(-x) = 0.

Quelle est la parité de f?

- **4.** On note f' la dérivée de f. Montrer que : $\forall x \in D, f'(x) = \frac{-2}{x^2-1}$.
- **5.** Étudier le sens de variation de f, puis dresser le tableau de variation de f.
- **6.** Construire la courbe (C) et ses asymptotes sur le même graphique.