Pays : TogoAnnée : 2014Session : normaleSérie : BAC, série DDurée : 4 hCoefficient : 3

Exercice 1

Soit l'équation (E) : $z \in \mathbb{C}$, $z^n = \frac{-9\sqrt{3} + 27i}{2}$, $n \in \mathbb{N}^*$.

- **1.** Déterminer les solutions z_k de (E).
- **2.** On pose : n = 5.

Représenter dans le plan complexe P muni d'un repère orthonormal $(O; \vec{u}, \vec{v})$ les points-images des solutions z_k de (E).

- **3.** On pose : $\alpha = -\frac{\sqrt{3}}{2} \frac{3}{2}i$.
- a) Soit $j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Exprimer en fonction de j.
- b) Montrer que est une solution de l'équation $z^5 = \frac{-9\sqrt{3} + 27i}{2}$.
- **4.** Soit la transformation T de P dans P, qui au point M de P d'affixe z associe le point M' de P d'affixe z tels que : $z' = \left(-\frac{\sqrt{3}}{2} \frac{3}{2}i\right)z + \frac{5 + \sqrt{3}}{2} + \frac{1 \sqrt{3}}{2}i$.
- a) Écrire la forme algébrique du nombre complexe $w = (1-i)(2+\sqrt{3}+3i)$.
- b) Donner la nature de T et préciser ses éléments caractéristiques.

Exercice 2

Un secteur de production d'une entreprise est composé de 3 catégories de personnel : les ingénieurs, les opérateurs de production et les agents de maintenance.

Il y a 8% d'ingénieurs et 80% d'opérateurs de production. Les femmes représentent 50% des ingénieurs, 25% des agents de maintenance et 60% des opérateurs de production.

On interroge au hasard un membre du personnel de cette entreprise. On note :

- M l'événement : « Le personnel interrogé est un agent de maintenance. » ;
- O l'événement : « Le personnel interrogé est un opérateur de production. » ;
- I l'évènement : « Le personnel interrogé est un ingénieur. » ;
- F l'évènement : « Le personnel interrogé est une femme. »
- 1. Construire un arbre pondéré correspondant aux données.
- 2. Calculer la probabilité d'interroger :
- a) un agent de maintenance;
- b) une femme agent de maintenance;
- c) une femme.
- **3.** Le service de maintenance effectue l'entretien des machines, mais il est appelé aussi à intervenir en cas de panne. Pour cela une alarme est prévue.

Des études ont montré que sur une journée :

- La probabilité qu'il n'y ait pas de panne et que l'alarme se déclenche est égale à 0,002.
- La probabilité qu'une panne survienne et que l'alarme ne se déclenche pas est égale à 0,003.

• La probabilité qu'une panne se produise est égale à 0,04.

On note:

- A l'événement : « L'alarme se déclenche. »
- B l'événement : « Une panne se produit. »
- a) Démontrer que la probabilité qu'une panne se produise et l'alarme se déclenche est égale à 0,037.
- b) Calculer la probabilité que l'alarme se déclenche.
- c) Calculer la probabilité qu'il y ait une panne sachant que l'alarme se déclenche.

Problème

A) On considère la fonction
$$f$$
 définie sur \mathbb{R} par :
$$\begin{cases} f(x) = -x + e^{\frac{x}{2}} - 3 \text{ si } x < 0 \\ f(x) = 2x^2 e^{\frac{x}{2}} - 2 \text{ si } x \ge 0 \end{cases}$$

On désigne par (\mathscr{C}) sa courbe représentative dans le plan rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$ d'unité graphique 1 cm.

- **1.** a) Étudier la continuité de f en 0.
- b) Montrer que pour tout nombre réel non nul u, on a : $\lim_{x\to 0} \frac{e^{\frac{u}{u}}-1}{x} = \frac{1}{u}$.

c) Calculer
$$\lim_{x\to 0} \frac{f(x)+2}{x}$$
 et $\lim_{x\to 0} \frac{f(x)+2}{x}$.

Interpréter analytiquement et géométriquement les résultats obtenus.

- **2.** Étudier le sens de variation de f et dresser son tableau de variation.
- **3.** *a*) Montrer que l'équation f(x) = 0 admet exactement deux solutions et telles que : < 0 < < 1.
- b) Vérifier que : -2,75 < < -2,74.

B) On pose :
$$g(x) = e^{-\frac{x}{4}}$$
 et $I = [0; 1]$.

- **1.** Monter que est l'unique solution de l'équation : x > 0, g(x) = x.
- 2. Montrer que pour tout x appartenant à I, g(x) appartient à I.
- **3.** Soit g' la fonction dérivée de g. Montrer que pour tout x de I, on $a: |g'(x)| \le \frac{1}{4}$.
- **4.** On définit la suite (U_n) par : $U_0 = 1$ et pour tout entier naturel n, $U_{n+1} = g(U_n)$.
- a) Démontrer par récurrence que (U_n) est une suite d'éléments de I.
- b) En appliquant les inégalités des accroissements finis, démontrer que pour tout entier naturel n,

on a:
$$|U_{n+1}^-| \le \frac{1}{4} |U_n^-|$$
, puis que $|U_n^-| \le (\frac{1}{2})^{2n}$.

- c) En déduire que la suite (U_n) est convergente et préciser sa limite.
- d) Déterminer le plus petit entier naturel n_0 pour lequel U_{n_0} est une approximation de à 10^{-3} près.
- e) Calculer la valeur correspondante de U_{n_0} .

C)

- **1.** a) Montrer que la droite () d'équation y = -x 3 est une asymptote à (\mathscr{C}) en .
- b) Étudier l'autre branche infinie de (\mathscr{C}).

- **2.** Construire avec soin () et (\mathscr{C}) dans le repère $(O; \vec{i}, \vec{j})$. (On prendra : ≈ -2.7 et ≈ 0.8).
- 3. a) Par des intégrations par parties, calculer $I = \int_0^{\beta} f(x) dx$.
- b) Exprimer l'aire $\mathcal{L}(\alpha, \beta)$ du domaine du plan limité par la courbe (\mathcal{C}), l'axe des abscisses et les droites d'équations x =et x =en fonction de et seulement.